Regulation of the small regulatory RNA MicA by ribonuclease III: a target-dependent pathway
نویسندگان
چکیده
MicA is a trans-encoded small non-coding RNA, which downregulates porin-expression in stationary-phase. In this work, we focus on the role of endoribonucleases III and E on Salmonella typhimurium sRNA MicA regulation. RNase III is shown to regulate MicA in a target-coupled way, while RNase E is responsible for the control of free MicA levels in the cell. We purified both Salmonella enzymes and demonstrated that in vitro RNase III is only active over MicA when in complex with its targets (whether ompA or lamB mRNAs). In vivo, MicA is demonstrated to be cleaved by RNase III in a coupled way with ompA mRNA. On the other hand, RNase E is able to cleave unpaired MicA and does not show a marked dependence on its 5' phosphorylation state. The main conclusion of this work is the existence of two independent pathways for MicA turnover. Each pathway involves a distinct endoribonuclease, having a different role in the context of the fine-tuned regulation of porin levels. Cleavage of MicA by RNase III in a target-dependent fashion, with the concomitant decay of the mRNA target, strongly resembles the eukaryotic RNAi system, where RNase III-like enzymes play a pivotal role.
منابع مشابه
Correction: Small RNA Modules Confer Different Stabilities and Interact Differently with Multiple Targets
Bacterial Hfq-associated small regulatory RNAs (sRNAs) parallel animal microRNAs in their ability to control multiple target mRNAs. The small non-coding MicA RNA represses the expression of several genes, including major outer membrane proteins such as ompA, tsx and ecnB. In this study, we have characterised the RNA determinants involved in the stability of MicA and analysed how they influence ...
متن کاملبیان ژن MALAT1 بعنوان یک نشانگر زیستی جدید در بیولوژی سرطان
Background & Aim: Long non-coding RNAs are regulatory molecules that adjust many vital intracellular processes. MALAT1 is a long non-coding RNA playing a key role in the regulation of intracellular important processes and also involved in biology of various cancers. The purpose of this study was to investigate the functions of MALAT1 and overview of its role in cancer biology. Methods: in this...
متن کاملMicroRNAs Regulated Brain Tumor Cell Phenotype and Their Therapeutic Potential
MicroRNAs (miRNAs)are short 18–25 nucleotide small non-coding RNA molecules that function to silence gene expression via sophisticated post-transcriptional regulation[1]. Since their discovery in the early 1990s, these small molecules have been shown to play an important regulatory role in a wide range of biological and pathological processes. Over 30% of human messenger RNAs (mRNAs) are regula...
متن کاملSigma E controls biogenesis of the antisense RNA MicA
Adaptation stress responses in the Gram-negative bacterium Escherichia coli and its relatives involve a growing list of small regulatory RNAs (sRNAs). Previous work by us and others showed that the antisense RNA MicA downregulates the synthesis of the outer membrane protein OmpA upon entry into stationary phase. This regulation is Hfq-dependent and occurs by MicA-dependent translational inhibit...
متن کاملRegulation of conditional gene expression by coupled transcription repression and RNA degradation
Gene expression is determined by a combination of transcriptional and post-transcriptional regulatory events that were thought to occur independently. This report demonstrates that the genes associated with the Snf3p-Rgt2p glucose-sensing pathway are regulated by interconnected transcription repression and RNA degradation. Deletion of the dsRNA-specific ribonuclease III Rnt1p increased the expr...
متن کامل